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A B S T R A C T   

Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of 
nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to 
immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a 
wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral 
actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on 
these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important 
antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin 
and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the 
antiviral properties of whey proteins and their potential applications in human health, focussing on their 
application in prevention and treatment of SARS-CoV-2 infection.   

1. Introduction 

This review has been carried out with the aim of summarizing the 
state-of-the-art on the role of lactoferrin and whey proteins in SARS- 
CoV-2 infection and their potentiality in COVID-19 treatment. A pre
liminary literature search was carried out on Medline (PubMed). In
clusion criteria were: In silico, In vitro and in vivo studies, clinical trials. 
Following, a more comprehensive literature search was carried out on 
Medline (Pubmed), EMBASE (Elsevier), Google Scholar. Additional pa
pers were added from the bibliography of the most relevant articles. 

2. Whey proteins 

Milk contains numerous bioactive components including proteins, 
lipids and oligosaccharides fulfilling several and pleiotropic functions 
that are physiologically directed to promote growth (Richter et al., 
2019) and a healthy development of new-borns and children (Eriksen 
et al., 2018; Hill & Newburg, 2015; Kim & Yi, 2020; Mosca & Giannì, 
2017). However, milk continues to be a basic food also for adults, due to 
other properties (e.g., antimicrobial, immunological and anti
tumorigenic), which can be more important than the nutritional func
tion (Clare et al., 2003; Gill & Cross, 2000; Kim et al., 2020). Indeed, 

most of the studies in the nutraceutical field are focusing on milk 
components and their derivatives in the attempt to exploit milk bioac
tive molecules for diseases’ treatment and prevention, and to find new 
accessible and health compatible drugs or to improve conventional 
therapies (Davies et al., 2018; Dybdahl et al., 2021; Galley & Besner, 
2020; Kennedy et al., 1995; Sánchez et al., 2021). 

Many of the biological and functional properties of milk are due to 
milk proteins (Donovan, 2019; Haschke et al., 2016; Li et al., 2017; 
Lönnerdal, 2003; Zhu & Dingess, 2019). Beside caseins, whey proteins 
represent one of the two major fractions of milk proteins (Yamada et al., 
2002). Milk also contains a third class of proteins known as mucins 
present in the fat globule membrane (Lönnerdal et al., 2017). 

Whey proteins constitute approximately 20% of milk proteins but 
their absolute content and ratio to caseins varies greatly, depending on 
the species but also on the lactation stage, being more abundant in 
colostrum than in mature milk (Atkinson & Lönnerdal, 1995; Lemay 
et al., 2013). 

Whey proteins mostly represented in human milk include α-lactal
bumin, immunoglobulins and serum albumin, while a minor fraction is 
represented by lactoferrin, glycomacropeptide, lactoperoxidase and 
lysozyme (Donovan, 2019; Haschke et al., 2016). Bovine milk has a 
similar composition except for the presence of a high amount of 
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β-lactoglobulin that is completely absent in human milk. Bovine milk 
also contains less α-lactalbumin than human milk (Schack et al., 2009). 

Whey proteins are considered to have the highest nutrition value due 
their content of essential amino acids. Besides this, whey proteins exert 
numerous biological and functional activities that influence different 
biological processes promoting bone growth and muscle strength, 
lowering cholesterol, improving cognitive functions, and regulating 
mood. In addition, they also display anti-oxidative, anticancer, antimi
crobial, anti-inflammatory and immunomodulatory functions (Akhavan 
et al., 2014; Krissansen, 2007; Layman et al., 2018; Morniroli et al., 
2021; Teixeira et al., 2019). 

3. Antiviral activity of whey proteins 

Due to their health-enhancing properties, bioavailability and safety, 
both native or chemically modified whey proteins and peptide de
rivatives are studied for their potential pharmacological activity alone 
or in synergy with other drugs against several disease including virus 
infections (Małaczewska et al., 2019) (see Table 1). It has been reported 
that human casein exerts an antiviral activity towards Human immu
nodeficiency virus (Berkhout et al., 2002), Human hepatitis B virus 
(Hara et al., 2002) and Human rotavirus (Inagaki et al., 2014). Despite 
this, most of the antiviral properties of milk are attributed to whey 
proteins that are known to exert important antiviral actions against 
different enveloped and non-enveloped viruses (Wakabayashi et al., 
2014) including influenza virus A (H1N1), human cytomegalovirus, 
human immunodeficiency virus (HIV1), hepatitis B and C virus (Florian 
et al., 2013; Liao et al., 2012; Redwan et al., 2014), avian influenza A 
(H5N1) (Taha et al., 2010), herpes simplex virus type 1 and 2, hanta
virus, poliovirus, influenza virus A (A1N1) (Sitohy et al., 2010a; Sitohy, 
Besse, Billaudel, Haertlé, & Chobert, 2010b), human rotavirus, human 
papilloma virus and enterovirus (Ng et al., 2015). The most important 
antiviral properties have been ascribed to native lactoferrin and peptide 
derivatives such as lactoferricin and lactoferrampin (Kell et al., 2020; 
Valenti & Antonini, 2005; Van der Strate et al., 2001; Wakabayashi 
et al., 2014; Giansanti et al., 2016), that, in some cases, showed strongly 
augmented antiviral effects compared to the native protein (Shestakov 
et al., 2012). Moreover, numerous studies showed that native lysozyme 
and chemically modified β-lactoglobulin, α-lactalbumin and some of 
their hydroxylated peptides, from human and other mammalians, also 
display valuable antiviral effects (Oevermann et al., 2003). Chemical 
modifications, such as acetylation or the addition of 3-hydroxyphthaloyl 
acid, enhance the antiviral properties of these proteins, presumably 
leading to charges change and redistribution (Pan et al., 2006). Indeed, 
kinetic studies demonstrated that the presence of negative charges 
strongly increases the affinity of whey proteins for viral cell target re
ceptors and for viral proteins (Zeder-Lutz et al., 1999). 

Despite native lactoferrin as well as other whey proteins, including 
lysozyme and chemically modified β-lactoglobulin and α-lactalbumin, 
have shown antiviral activity towards a greatly overlapping spectrum of 
pathogens they exert their antiviral activity with several, even if not 
fully elucidated, mechanisms of action (Ng et al., 2015). Most of the 
known mechanisms of actions involve interactions of whey proteins 
with host cell receptors or with the viral genomes preventing viral entry 
and replication in cells. Studies performed on human deficiency virus 1 
(HIV-1) demonstrated that bovine lactoferrin and its hydrolysis peptide 
lactoferricin inhibit virus entry by acting on CXCR4 and CCR5 receptors 
(Berkhout et al., 2004), and the apo form of bovine lactoferrin was 
demonstrated to have a role in the inhibition of HIV-1 replication 
(Puddu et al., 1998). On the other hand, the inhibition of HIV-1 entry in 
CD4 cells by modified β-lactoglobulin and α-lactalbumin was showed to 
be mainly due to interactions with the gp120 envelope protein (Neurath, 
Debnath, Strick, Li, Lin, & Jiang, 1995). In human cytomegalovirus 
infection, lactoferrin, methylated β-lactoglobulin and α-lactalbumin 
mainly inhibit virus replication and transcription by interacting with the 
viral genome (Chobert et al., 2007; Swart et al., 1998). Similar 

mechanisms of action were shown in studies carried out on hepatitis B 
and C viruses and on herpes simplex virus type 1 and 2, where inhibition 
by human and bovine lactoferrin and peptide derivatives and by 
α-lactalbumin, β-lactoglobulin and lysozyme, respectively, depends by 
interaction between viral and cell proteins that interfere with virus entry 
and multiplication (Sitohy et al., 2007). It was further demonstrated that 
lactoferrin acts also interacting with heparan sulfate proteoglycans 

Table 1 
Antiviral activity of the main whey proteins.  

Whey Protein Virus References 

Lactoferrin Friend Virus Complex 
(mouse virus) 

Lu et al., 1991  

Herpes simplex virus 
type 1and 2 

Marchetti et al., 1998  

Hepatitis C virus Ikeda et al., 2000  
Human rotavirus Superti et al., 2001  
Hantavirus Murphy et al., 2001  
Adenovirus Arnold et al., 2002  
Feline Calicivirus 
(feline virus) 

McCann et al., 2003  

Poliovirus Seganti et al., 2004  
Human 
immunodeficiency 
Virus 

Berkhout et al., 2004  

Human 
cytomegalovirus 

Beljaars et al., 2004  

Sindbis virus and 
semliki forest virus 

Waarts et al., 2005 

Human papillomavirus Mistry et al., 2007 
Human echovirus Ammendolia et al., 2007 
Japanese Encephalitis 
Virus 

Chien et al., 2008 

Hepatitis B virus Li et al., 2009 
Enterovirus Yen et al., 2011 
Respiratory syncytial 
virus 

Gualdi et al., 2013 

Influenza virus A 
(H1N1) 

Superti et al., 2019 

Angiogenin Human 
immunodeficiency 
Virus 

Wang et al., 2000 

Milk mucin Human rotavirus Yolken et al., 1992 
Poxvirus Habte et al., 2007 
Human 
immunodeficiency 
Virus 

Mall et al., 2017 

β-lactoglobulin (Native 
or chemically 
modified) 

Human 
immunodeficiency 
Virus 

Neurath et al., 1996 

Influenza virus A 
(H1N1) 

Schoen, Corver, Meijer, 
Wilschut, & Swart, 1997; 
Sitohy et al., 2010a 

Herpes simplex virus 
type 1and 2 

Neurath et al., 1998 

Human 
cytomegalovirus 

Chobert et al., 2007 

Human papillomavirus Taha et al., 2010 
Avian influenza A 
(H5N1) 

Lu et al., 2013 

Human rotavirus Ng et al., 2015 
α-lactalbumin Herpes simplex virus 

type 1and 
Oevermann et al., 2003 

Human 
immunodeficiency 
Virus 

Marshall, 2004 

Human 
cytomegalovirus 2 

Chobert et al., 2007 

Lysozyme Herpes simplex virus 
type 1 

Oevermann et al., 2003 

Human 
immunodeficiency 
Virus 

Behbahani et al., 2018 

Lactadherin Human rotavirus Bojsen et al., 2007 
Tenascin-C Human 

immunodeficiency virus 
Mangan et al., 2019  
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(HSPs) on the host cell surface as reported in in vitro studies carried out 
on alphavirus infection (Waarts et al., 2005). 

In addition, the antiviral action of whey proteins was also shown to 
depend by other mechanisms including the inhibition of viral shedding, 
as reported in in vitro studies concerning the effects of lactoferrin on 
Hantavirus infection, and cytopathic effects, as reported by studies 
regarding lactoferrin and lactoperoxidase’s action on influenza virus A 
(H1N1) and human echovirus (Pietrantoni et al., 2006; Shin et al., 
2005). Another mechanism of action was observed in a study carried out 
on infuenza A virus. This work demonstrated that the interaction be
tween bovine lactoferrin and viral haemagglutinin leads to the inhibi
tion of the virus-induced haemagglutination and consequentially to a 
reduction of infection (Ammendolia et al., 2016); a similar mechanism 
of action was also observed in previous studies on influenza virus A and 
glycomacropeptide (Kawasaki et al., 1993). 

Although almost all of the reported and known antiviral mechanisms 
of actions involve a direct effect on virus entry and replication caused by 
protein/virus interaction, greatly influenced by proteins’ charge distri
bution, recent studies carried out on lactoferrin and norovirus showed a 
possible, but not yet fully understood, indirect mechanism of action in 
reducing norovirus infection involving a lactoferrin-mediated induction 
of innate interferon response (Oda et al., 2021). 

Following the coronavirus emergency, several researchers started to 
investigate molecules able to adjuvate and implement current conven
tional therapies for prevention and treatment of Covid-19. Several of 
these studies focused on milk and whey proteins, especially lactoferrin 
(see Table 2). This article aims to provide an updated review on the 
antiviral properties of whey proteins and their peptide derivatives 
examining the most recent findings upon anti-SARS-CoV-2 effects and 
health applications. 

4. Anti SARS-Cov-2 activity of whey proteins 

Fan and co-workers demonstrated for the first time that whey pro
teins from human breast milk and from other species, including goat and 
cow milk, inhibit both SARS-CoV-2 and pangolin coronavirus (GX_P2V) 
by blocking virus entry and replication in Vero E6 and A549 cell lines, 
with a EC50 of about 0.13 and 0.5 mg/ml of total protein, respectively; a 
similar effect was also demonstrated for some commercial bovine milk 
formula (Fan et al., 2020). The authors also suggested that breast milk 
inhibits both virus entry and replication presumably by reducing the 
affinity between SARS-CoV-2 S protein and ACE-2 and by interfering 
with viral RNA-dependent RNA-polymerase, respectively. This study 
also verified the contribution of lactoferrin in these processes. Both re
combinant human and bovine lactoferrin showed a valuable but lower 
viral inhibition compared to the whole whey protein, suggesting that 
also other whey proteins could be involved in reducing infectivity, 
presumably with a synergic mechanism. Considering Lf concentration in 
breast milk during SARS-CoV-2 infection, no difference was found be
tween SARS-CoV-2 positive mothers and controls. However, in a specific 
subgroup, symptomatic mothers displayed lower breast milk Lf con
centrations as compared to asymptomatic mothers and healthy controls, 
suggesting that SARS-CoV-2 infection could cause variations in the 
breast milk concentration of Lf. (Briana et al., 2021). Considering the 
individual whey proteins, in addition to lactoferrin, other whey proteins 
including beta-lactoglobulin and lysozyme were analysed for their po
tential antiviral activity against SARS-CoV-2 (Pradeep et al., 2021) and 
in reducing inflammation, infiltration, and activation of innate immune 
cells such as neutrophils and macrophages (Mann & Ndung’u, 2020) 
(Table 2). 

4.1. Lactoferrin 

Previous studies already demonstrated the antiviral action of lacto
ferrin against SARS-COV pseudovirus performed by inhibiting virus 
entry with a mechanism that involves binding to heparan sulfate (HS) 

Table 2 
Anti-Coronavirus activity of whey proteins.  

Protein Type of 
experiment 

Notes References 

Whey proteins In vitro The whole human 
breast milk whey 
proteins association is 
active towards SARS- 
CoV-2 and pangolin 
coronavirus 

Fan et al., 2020 

Lactoferrin (Lf) In silico Lf displays high affinity 
with the spike CTD1 
domain 

Campione et al., 
2021 

In silico Lf binds to sialic acid 
sheltering the cell from 
the virus attachment 

Miotto et al., 
2021 

In silico Lf competes with spike 
protein for binding to 
ACE2 receptor 

Miotto et al., 
2021. 

In silico Milk peptides are 
multitargeted anti- 
COVID-19 drug 
candidates 

Pradeep et al., 
2021 

In vitro Lf hinders SARS 
pseudovirus binding at 
the level of heparan 
sulfate proteoglycans 

Lang et al., 2011 

In vitro 
hypothesis 

Lf reduces SARS-CoV-2 
infectivity inhibiting 
cathepsin L activity 

Madadlou, 2020 

In vitro 
hypothesis 

Lf blocks spike protein 
furin-cleavage site 

Naidu et al., 
2020 

In vitro Lf blocks SARS-CoV-2 
entry by interaction 
with heparan sulfate 

de Carvalho 
et al., 2020 
(preprint) 

In vitro Lf alone is less active 
than the whole human 
breast milk whey 
proteins association 

Fan et al., 2020 

In vitro Lf prevents host 
attachment of SARS- 
Cov-2 and other 
coronavirus through 
multiple interactions 
with cell membrane 
heparan sulfate 
proteoglycans 

Hu et al., 2021 

In vitro Lf blocks SARS-CoV-2 
virus attachment to 
cellular heparan sulfate 
and enhances of 
interferon responses 

Mirabelli et al., 
2021 

In vitro Lf acts also as an 
immune modulator of 
the antiviral immune 
response 

Salaris et al., 
2021 

In vitro Lf potentiates the effect 
of remdesivir towards 
SARS-CoV-2 

Mirabelli et al., 
2021; Hu et al., 
2021 

In vitro Lf enhances 
hypothiocyanite anion 
(OSCN− ) activity 
towards SARS-CoV-2 

Cegolon et al., 
2021 

In vivo Oral and intranasal 
liposomal Lf causes 
faster clinical recovery 

Campione et al., 
2020a 

In vivo 
hypothesis 

Lf could be used as 
single- or combination 
treatment for both 
prevention and therapy 
of COVID-19 

Chang et al., 
2020 

In vivo Combined oral 
administration of 
liposomal Lf and zinc 
solution allowed 
prompter recovery of 
patients 

Cegolon & 
Mastrangelo, 
2020a; 2020b 

(continued on next page) 
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(Lang et al., 2011). The study, carried out on SARS pseudovirus infected 
HEK293E/ACE2-Myc cells, demonstrated that lactoferrin binds on the 
cell surface mainly at the level of heparan sulfate proteoglycans, hin
dering binding of the spike protein to the cell surface in an ACE-2 in
dependent mechanism (Lang et al., 2011). SASR-CoV-2 entry in target 
cells mainly involves the interaction of the viral spike glycoprotein with 
its cognate cellular receptor angiotensin-converting enzyme 2 (ACE2) 
(Hoffmann et al., 2020). However, the interaction of the virus with other 
cell molecules such as heparan sulfate, that mediates the virion adhesion 
to the cell membrane, facilitating the interaction with ACE-2, and with 
cell proteases, including lysosome-localized Cathepsin L and serine 
proteases of the TMPRSS family, that favour internalization, is also 
required for SARS-CoV-2 entry (Zang et al., 2020; Zhang et al., 2020; 
Shang et al., 2020). Indeed, in silica studies, suggested that lactoferrin 
directly interacts and binds to sialic acid, sheltering the cell from the 
virus attachment; moreover, a possible competition between lactoferrin 
and ACE2 for binding to the spike protein was also postulated (Miotto 
et al., 2021). Recently, Hu et al. (2021), demonstrated that both bovine 
and human lactoferrin efficiently inhibit the entry of SARS-CoV-2 
pseudovirus and other common coronaviruses, HCoV-OC43, HCoV- 
NL63, and HCoV-229E, in several cell lines including Vero E6, Calu-3 
and 293 T-ACE2 cells by preventing host attachment through multiple 
interactions with the negatively charged cell membrane HSPGs. In 
particular, the inhibition mediated by bovine lactoferrin was higher 
than that obtained with human lactoferrin, with EC50 values for HCoV- 
OC43, HCoV-NL63, and HCoV-229E viruses from 11.2 to 37.9 μg/ml 

(bovine lactoferrin) and from 35.7 to 117.9 μg/ml (human lactoferrin), 
while, for SARS-CoV-2 the EC50 value of bovine lactoferrin was around 
500 μg/ml. Furthermore, in Vero E6 cell bovine lactoferrin also inhibi
ted SARS-CoV-2 replication and virion production, but only when lac
toferrin was added before the virus entry. The higher antiviral activity 
exerted by bovine lactoferrin was also demonstrated to be due to its 
greater HS binding affinity (Hu et al., 2021). 

Bovine lactoferrin was demonstrated to be effective in reducing in 
vitro progeny virus yield of up to 84% in Vero E6 and 68% in A549 cell 
lines at a concentration of 1 mg/ml. In addition, the inhibitory activity 
of lactoferrin on SARS-CoV-2 was attributed to the ability to block the 
virus entry interacting with HS (de Carvalho et al., 2020). However, 
other authors reported that the antiviral effect of lactoferrin, besides 
being dose-dependent, greatly varies depending on the experimental 
conditions (e.g., being evident only after pre-infection treatment) and 
cell type (Campione et. al., 2020a). Indeed, it is important to note that in 
a study carried out on iAEC2s and Huh7 cells the anti-SARS-CoV-2 ef
fects of lactoferrin were demonstrated within a nanomolar range (Mir
abelli et al., 2021). 

Despite the fact that there are no experimental evidences that 
lactoferrin-mediated inhibition of cathepsin L can affect SARS-CoV-2 
internalization, other molecules with similar inhibitory properties on 
cathepsin L, such as K77, were already identified as able to strongly 
affect SARS-CoV-2 infection in different cell lines (Mellott et al., 2021), 
suggesting a potential role of lactoferrin in reducing SARS-CoV-2 viral 
infectivity through the inhibition of cathepsin L activity (Madadlou, 
2020), considering that inhibitors of cathepsin L have been demon
strated to prevent severe acute respiratory syndrome coronavirus entry 
(Simmons et al., 2005). In addition, at the junction of S1-S2 subunits of 
spike proteins is present a polybasic cleavage site, required for the 
cellular virus uptake, that is processed by furin and other cell proteases 
(Andersen et al., 2020). In this context, highly basic proteins, such as 
lactoferrin, might compete for the spike protein furin-cleavage site and 
inhibit virus entry (Naidu et al., 2020). 

In addition to the inhibition of virus entry and/or virus replication, 
several in vitro studies reported that lactoferrin acts against SARS-CoV-2 
infection enhancing the antiviral host cell response. Modulation of host 
cell immunity was identified as another main and indirect mechanism of 
action related to the anti-SARS-CoV-2 effect of lactoferrin, exerted by 
the induction of an increased expression of interferon and interferon- 
stimulated genes (Mirabelli et al., 2021). Indeed, lactoferrin was 
demonstrated to significantly induce the expression of interferon and 
anti-inflammatory and pro-inflammatory cytokines in uninfected caco-2 
cells inducing IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes 
and enhancing the antiviral immune response. It was also showed that 
the expression of RNA-dependent RNA polymerase (RdRp) and E gene 
(CoVE) was significantly reduced in lactoferrin-treated SARS-CoV-2 
infected Caco-2 cells (Salaris et al., 2021). Moreover, this study 
confirmed previous findings in which lactoferrin was also shown to 
decrease the massive production of inflammatory cytokines, including 
IL-6 (Cutone et al., 2014; Zimecki at al., 2021). Besides these two main 
mechanisms of action, lactoferrin was reported to be an effective in
hibitor of cysteine proteases, including cathepsin L (Ohashi et al., 2003), 
a key enzyme in virus internalization, involved in spike protein pro
cessing (Ou et al., 2020). 

Importantly, in the attempt to find new possibly stronger anti-SARS- 
CoV-2 treatments, an increasing number of in vitro studies demonstrated 
synergies between lactoferrin and other antiviral molecules, including 
several FDA-approved drugs. Bovine lactoferrin was demonstrated to 
display a synergistic antiviral effect with remdesivir, an FDA-approved 
antiviral drug which inhibits SARSCoV-2 polymerase, potentiating of 
about 8-fold its efficacy (Hu et al., 2021; Mirabelli et al., 2021). Lacto
ferrin was also reported to enhance the antiviral activity of the 
hypothiocyanite anion (OSCN− ) against SARS-CoV-2 in combination 
treatments performed on Vero E6 and HEK293T cell lines (Cegolon 
et al., 2021). 

Table 2 (continued ) 

Protein Type of 
experiment 

Notes References 

In vivo No definitive 
conclusion about Lf 
potential benefit as a 
support therapy 

Algahtani et al., 
2021 

In vivo Milk Lf levels are 
potentially influenced 
by the severity of 
maternal COVID-19 
infection during 
pregnancy. 

Briana et al., 
2021 

Retrospective 
study 

Lf supplementary 
treatment in 
counteracting SARS- 
CoV-2 

Rosa et al., 2021 

In vivo 
hypothesis 

Lf could display high 
therapeutic value 
against COVD-19 due to 
its iron-chelating 
activity 

Habib et al., 
2021 

Lysozyme In vitro and in 
vivo (mice) 

Inhalable composite 
niclosamide-lysozyme 
particles active towards 
SARS-CoV-2 

Brunaugh et al., 
2021 

In vivo 
hypothesis 

Potential beneficial role 
of lysozyme presents in 
tears on limiting 
hypothetical ocular 
surface transmission of 
SARS-CoV-2 

de Freitas 
Santoro et al., 
2021 

Beta- 
lactoglobulin 

In silico Inhibition of cathepsin 
L and possible 
inhibition of SARS-CoV- 
2 entry 

Madadlou, 2020 

In silico possible binding 
between beta- 
lactoglobulin derived 
peptides and spike 
protein 

Çakır et al., 
2021. 

Lactoperoxidase In vitro Generates OSCN− that 
is effective to inhibit 
several viruses 

Cegolon & 
Mastrangelo, 
2020b, Cegolon 
et al., 2021  
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Findings concerning the possible molecular mechanisms behind anti- 
SARS-CoV-2 activity of lactoferrin were also supported and com
plemented by several in silico studies. Using a protocol based on the 2D 
Zernike Polynomials, Miotto el al. (2021) carried out a computational 
study to evaluate the possibility of lactoferrin to bind or interact with 
several cell and virus substrates considered as involved in SARS-CoV-2 
infection. Results found for sialic acid, heparan sulfate, ACE2, spike 
protein, and other membrane and envelope proteins, highlighting a 
possible competition between ACE2 and lactoferrin for binding of SARS- 
CoV-2 spike protein (Miotto et al., 2021). Other molecular docking 
simulations confirmed the high affinity of bovine lactoferrin to the spike 
CTD1 domain, which is the same region of the spike protein that is 
involved in the binding with ACE-2, and a possible but significantly 
lower affinity of human lactoferrin (Campione et al., 2021), opening the 
possibility that lactoferrin could exert its blocking activity on virus entry 
also hampering spike protein for the binding to its cognate receptor ACE- 
2. Lactoferrin was also investigated for its function of iron binding 
protein. Dalamaga et al. (2020) reviewed the role of iron in Covid-19 
inflammation and on the potential role of iron chelator agents in 
reducing the SARS-CoV-2 inflammation related to iron overload. Simi
larly, Habib et al. (2021) hypothesised a high therapeutic value of lac
toferrin for its iron-chelating activity. 

Considering the results obtained in vitro and in silico studies, 
numerous clinical trials are in progress to investigate the anti-SARS- 
CoV-2 action of lactoferrin in vivo, where lactoferrin could be used as 
single- or combination treatment for both prevention and therapy of 
COVID-19 disease (Chang et al., 2020). To date there is still little evi
dence coming from clinical studies; however, a prospective observa
tional study on 75 COVID-19 positive patients demonstrated that the 
combined oral administration of liposomal lactoferrin and zinc solution 
for 10 days allowed a complete and prompter recovery of all treated 
patients compared to untreated controls within the first 5 days of 
treatment (Cegolon et al., 2020a). Moreover, a similar treatment (lipo
somal Lf + Zinc) was effective in preventing the disease in healthy 
people that were exposed to the virus (Serrano et al., 2020). In addition, 
another promising ongoing clinical trial is studying the effect of both 
local treatment with liposomal formulation of lactoferrin, administered 
as intra-nasal spray, and oral assumption in the treatment of coronavirus 
infection and inflammation and in preventing a severe disease pro
gression in asymptomatic or mild patients (Campione et al., 2020b). In a 
small retrospective study on asymptomatic, paucisymptomatic, and 
moderate symptomatic COVID-19 patients, the time required to achieve 
SARS-CoV-2 RNA negativization in patients orally treated with bovine Lf 
was significantly lower compared to that observed in Lf-untreated ones 
(Rosa et al., 2021). However, another study showed that the differences 
regarding reduction in symptoms and laboratory indices between pa
tients receiving approved Egyptian COVID-19 management protocol and 
patients receiving the same treatment plus lactoferrin were not statis
tically significant. Further studies with larger samples as well as longer- 
term trials to understand the role of Lf in treating SARS-CoV-2 are 
required (Algahtani et al., 2021; Wang et al. 2020). 

4.2. Lysozyme 

Antiviral properties of lysozyme are mainly attributed to its cationic 
nature that allows it to bind negatively charged membrane molecules 
(Małaczewska et al., 2019; Sava, 1996). Lysozyme resulted effective 
against herpes simplex and herpes zoster (Ferrari et al., 1959) and able 
to affect HIV-1 replication (Lee-Huang et al., 1999). Even if there are still 
not studies that demonstrate the efficacy of lysozyme in the inhibition of 
SARS-CoV-2, recently de Freitas Santoro and co-workers discussed the 
potential beneficial role of lysozyme found in tears in limiting hypo
thetical ocular surface transmission of COVID-19 (de Freitas Santoro 
et al., 2021). 

Beside its antiviral action, in the context of lung diseases, there is 
strong evidence that lysozyme aerosol treatment is effective in reducing 

inflammation and lung tissue injuries in animal models of pneumonia 
and emphysema (Cantor et al., 2002; Griswold et al., 2014). Further
more, lysozyme exerts neuroprotective functions (Helmfors et al., 2015) 
that could be helpful to prevent neurological COVID-19 outcomes. In 
vitro studies on SARS-CoV-2 infected Vero E6 cells demonstrated that 
lysozyme enhances the antiviral action of niclosamide. Interestingly, 
lysozyme was also found to significantly reduce lung viral load in SARS- 
CoV-infected mice after intranasal administration in combination with 
niclosamide and to exert an immunomodulatory action (Brunaugh et al., 
2021). 

4.3. Beta-lactoglobulin 

Beta-lactoglobulin is a whey protein belonging to lipocalin family; it 
is very abundant in cow and goat milk but is absent in human milk. 
Several studies report the antiviral properties of chemically modified 3- 
hydroxyphthalic anhydride- bovine beta-lactoglobulin showing its 
potent inhibition activity against HIV, HSV-1, HSV-2, (Neurath et al., 
1995, 1998) and several HPVs including HPV6, HPV16 and HPV18 (Lu 
et al., 2013). These results elicit the possible action of chemically 
modified beta-lactoglobulin against SARS-CoV-2. Although there are 
still no in vitro studies in this regard, peptides derived from the hydro
lysis of goat milk beta-lactoglobulin were studied for their anti-SARS- 
CoV-2 activity using in silico approaches. In particular, Beta- 
lactoglobulin peptides were analysed to investigate their effectiveness 
against SARS-CoV-2 proteases and spike protein and their inhibitory 
activity on ACE and DPP-4 and furin enzymes was displayed, based on 
BIOPEP calculations. Docking studies also demonstrated a possible 
binding between beta-lactoglobulin derived peptides and spike protein, 
suggesting their potential role in inhibiting SARS-CoV-2 infection (Çakır 
et al., 2021). Similarly, to what previously discussed for lactoferrin, 
beta-lactoglobulin was demonstrated to inhibit cathepsin L, suggesting 
its potential antiviral role in SARS-CoV-2 inhibition of virus entry 
(Madadlou, 2020). In addition to its antiviral activity, beta-lactoglobulin 
was demonstrated to effectively enhance immune responses promoting 
cell proliferation (Tai et al., 2016). Overall, these findings suggest that 
beta-lactoglobulin is a promising molecule that needs to be further 
investigated as an adjuvant in COVID-19 treatment. 

4.4. Lactoperoxidase 

Lactoperoxidase is a whey protein belonging to the heme peroxidase 
family. In the presence of hydrogen peroxide, lactoperoxidase reacts 
with thiocyanate (SCN-) generating the antimicrobial hypothiocyanite 
anion (OSCN− ). This activity counts for its strong antimicrobial activity, 
also established against several viruses such as HIV, HSV-1, adenovirus, 
echovirus, respiratory syncytial virus (RSV) and influenza virus (Cego
lon & Mastrangelo, 2020b). Interestingly, in vitro studies on cell models 
demonstrated that OSCN− is effective in inhibiting SARS-CoV-2 infec
tion at a micromolar range (Cegolon et al., 2021), suggesting that lac
toperoxidase activity towards SARS-CoV-2 should be further 
investigated. 

5. Conclusions and perspectives 

Whey proteins and their biologically active peptides encountered 
great scientific interest as nutraceuticals in the prevention and treatment 
of several viral diseases, due to their important antiviral and anti- 
inflammatory properties and to their wide availability and biosafety. 

The ongoing Covid-19 pandemic disease is still now lacking effective 
treatments and the individuation of new molecular targets and low- 
toxicity antiviral drugs can be currently an important weapon to fight 
with. This emergency led scientists to investigate the anti-SARS-CoV-2 
properties of milk and whey proteins. Several in vitro studies carried 
out on different cell types demonstrated a strong antiviral and anti- 
inflammatory activity of whey proteins, especially lactoferrin, against 
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SARS-CoV-2 and a possible role in reducing pulmonary injuries and 
other detrimental COVID-19 outcomes. Furthermore, in silico studies of 
molecular docking gave strong evidence of putative binding sites on 
both cellular and viral molecules involved in virus infection, helping in 
the discovery of antiviral molecular targets. These results suggested that 
lactoferrin together with other whey proteins including beta- 
lactoglobulin, lysozyme and lactoperoxidase could be excellent candi
dates as new antiviral and immunomodulatory molecules (Mann & 
Ndung’u, 2020). Importantly, lactoferrin was also found to enhance the 
antiviral activity of some existing anti-COVID-19 drug when used in 
combination treatments, eliciting the possibility that it could be used 
both alone or in combination, to help conventional therapies in inhib
iting infection and reducing inflammation. Indeed, an increasing num
ber of ongoing clinical studies are supporting in vitro results, confirming 
the possible usefulness of lactoferrin and whey proteins in COVID-19 
prevention and treatment. 

Several “in silico” and “in vitro” studies indicate that lactoferrin and 
whey proteins are promising therapeutic agents against SARS-CoV-2 
infection. However, from the surveyed literature, several points should 
be better addressed (larger cohorts of patients, pharmaceutical formu
lation and co-treatments, dosage and duration of treatments) to assess 
the effectiveness of lactoferrin and whey proteins in targeting COVID-19 
infection and their use as new drug candidates against SARS-CoV-2. 
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